武器原理
由于产生聚变反应的轻原子核都带有正电荷,只有当它们的速度很高时才能克服正电荷间的静电斥力,发生显著的聚变反应。当热核装料的温度很高时,组成装料的原子核就具备了很高的速度(从而有很高的动能)。利用这种办法发生的聚变反应叫热核聚变反应,简称热核反应。轻核中氢的同位素氘和氚原子核间的斥力最小。因此常常被选作氢弹的装料。
氘氚原子核间的反应方式有:
D+D→T+p+4.03MeV;
D+D→3He+n+3,27MeV;
D+T→4He+n+17.6MeT
式中,D、T分别代表氘核和氚核,n、p分别代表中子和质子,3HE、4HE分别代表氦C3核和氦C4核。当热核装料的温度为几百万至几亿开尔文时,氘氘反应的速率约比氘氚反应快100倍。由于氘氚是气体或液体,使用起来不大方便。氢弹中常用的热核装料是固态氘化锂C6,其密度约为0.8克/厘米3左右。当锂-6吸收一个中子时,产生氚;氚与氘反应又产生中子,即进行氚-中子循环反应。
氚、中子循环一代,消耗一个氘核和一个锂-6核,放出约22.4兆电子伏的能量。在氢弹中,烧掉1千克氘化锂-6,释放4—5万吨梯恩梯当量左右的能量。创造自持聚变反应所必须的高温、高密度条件需要大量能量,目前只能靠核裂变爆炸来完成。因此氢弹里都有一个起引爆作用的裂变爆炸装置,即“初级”或“扳机”。
整个爆炸过程虽然极短,但是步骤分明:当雷管引起普通炸药爆炸时,就将分开的核装料迅速压拢,使其达到临界质量,造成原子弹爆炸,即氢弹的“初级”爆炸;然后原子弹爆炸产生的几千万摄氏度高温,使氘和氚的核外电子流统统剥离掉,成为一团由裸原子核和自由电子所组成的气体,氘和氚以每秒几百千米的速度互相碰撞,迅速、剧烈地进行合成氦的反应,巨大的聚变能量迸发而出,就造成氢弹的“次级”爆炸。这就是原子弹“扳机”引爆氢弹的全过程。 氢弹爆炸时达到的温度约为3.5亿度,亦即太阳中心温度的20倍。
由于产生聚变反应的轻原子核都带有正电荷,只有当它们的速度很高时才能克服正电荷间的静电斥力,发生显著的聚变反应。当热核装料的温度很高时,组成装料的原子核就具备了很高的速度(从而有很高的动能)。利用这种办法发生的聚变反应叫热核聚变反应,简称热核反应。轻核中氢的同位素氘和氚原子核间的斥力最小。因此常常被选作氢弹的装料。
氘氚原子核间的反应方式有:
D+D→T+p+4.03MeV;
D+D→3He+n+3,27MeV;
D+T→4He+n+17.6MeT
式中,D、T分别代表氘核和氚核,n、p分别代表中子和质子,3HE、4HE分别代表氦C3核和氦C4核。当热核装料的温度为几百万至几亿开尔文时,氘氘反应的速率约比氘氚反应快100倍。由于氘氚是气体或液体,使用起来不大方便。氢弹中常用的热核装料是固态氘化锂C6,其密度约为0.8克/厘米3左右。当锂-6吸收一个中子时,产生氚;氚与氘反应又产生中子,即进行氚-中子循环反应。
氚、中子循环一代,消耗一个氘核和一个锂-6核,放出约22.4兆电子伏的能量。在氢弹中,烧掉1千克氘化锂-6,释放4—5万吨梯恩梯当量左右的能量。创造自持聚变反应所必须的高温、高密度条件需要大量能量,目前只能靠核裂变爆炸来完成。因此氢弹里都有一个起引爆作用的裂变爆炸装置,即“初级”或“扳机”。
整个爆炸过程虽然极短,但是步骤分明:当雷管引起普通炸药爆炸时,就将分开的核装料迅速压拢,使其达到临界质量,造成原子弹爆炸,即氢弹的“初级”爆炸;然后原子弹爆炸产生的几千万摄氏度高温,使氘和氚的核外电子流统统剥离掉,成为一团由裸原子核和自由电子所组成的气体,氘和氚以每秒几百千米的速度互相碰撞,迅速、剧烈地进行合成氦的反应,巨大的聚变能量迸发而出,就造成氢弹的“次级”爆炸。这就是原子弹“扳机”引爆氢弹的全过程。 氢弹爆炸时达到的温度约为3.5亿度,亦即太阳中心温度的20倍。