猴博士吧 关注:37,503贴子:24,019
  • 4回复贴,共1
复变函数求解


来自手机贴吧1楼2018-05-24 21:13回复
    设x^6=-1即x^6=cos[(2n+1)π]+isin[(2n+1)π]
    所以x=cos[(2n+1)π/6]+isin[(2n+1)π/6];
    n=0时,x1=cos(π/6)+isin(π/6)=√3/2+i/2;
    n=1时,x2=cos(π/2)+isin(π/2)=i;
    n=2时,x3=cos(5π/6)=isin(5π/6)=-√3/2+i/2;
    n=3时,x4=cos(7π/6)+isin(7π/6)=-√3/2-i/2;
    n=4时,x5=cos(3π/2)+isin(3π/2)=-i,
    n=5时,x6=cos(11π/6)+isin(11π/6)=√3/2-i/2;


    2楼2018-05-24 22:07
    收起回复