22:令x=2tant,于是
2sect(2sec²t) =sec³─1+1= (sect─1)(sec²t+sect+1)
∫───────────────────────────────────+∫ cot²t dt
4tan²t =sec²t─1 =(sect-1)( sect+1)
1 = cost 1-sin²t
∫sectdt+ ∫─────────────────dt+∫───────dt
sect+1 = 1+cost sin²t
cost(1-cost) =cost─(1-sin²t)
ln(sect+tant)+∫────────────────────dt ─cott─t
sin²t =sin²t
ln(sect+tant)─csct + cott +t─cott-t+c
ln(sect+tant)─csct+c