数据可视化指的是通过可视化表示来探索数据,它与数据挖掘紧密相关,而数据挖掘指的是使用代码来探索数据集的规律和关联。数据集可以是用一行代码就能表示的小型数字列表,也可以是数以吉字节的数据。
漂亮地呈现数据关乎的并非仅仅是漂亮的图片。以引人注目的简洁方式呈现数据,让观看者能够明白其含义,发现数据集中原本未意识到的规律和意义。
所幸即便没有超级计算机,也能够可视化复杂的数据。鉴于Python的高效性,使用它在笔记本电脑上就能快速地探索由数百万个数据点组成的数据集。数据点并非必须是数字,利用本书前半部分介绍的基本知识,也可以对非数字数据进行分析。
在基因研究、天气研究、政治经济分析等众多领域,大家都使用Python来完成数据密集型工作。数据科学家使用
Python编写了一系列令人印象深刻的可视化和分析工具,其中很多也可供你使用。最流行的工具之一是matplotlib,它是一个数学绘图库,我们将使用它来制作简单的图表,如折线图和散点图。然后,我们将基于随机漫步概念生成一个更有趣的数据集——根据一系列随机决策生成的图表。
我们还将使用Pygal包,它专注于生成适合在数字设备上显示的图表。通过使用Pygal,可在用户与图表交互时突出元素以及调整其大小,还可轻松地调整整个图表的尺寸,使其适合在微型智能手表或巨型显示器上显示。我们将使用Pygal以各种方式探索掷骰子的结果。
以上就是本期的全部内容了,想学习更多编程知识,请关注好学编程吧!