newbing必应吧 关注:3贴子:21
  • 2回复贴,共1

训练与优化

只看楼主收藏回复

在训练数据的预处理过程中,需要将对话历史和当前问题拼接成⼀个⽂本序列,作为模型的输⼊。同时,为了避免
模型过拟合,需要使⽤⼀些数据增强技术,⽐如随机打乱对话历史的顺序、添加噪声等。
在模型的训练过程中,需要使⽤类似于基础知识中介绍的交叉熵损失函数进⾏优化。但是,在基于 ChatGPT 的对
话⽣成任务中,输出序列的⻓度通常⽐᫾⻓,因此在计算损失函数时,需要使⽤⼀些技巧来避免梯度消失或爆炸的
问题,⽐如使⽤动态规划算法来计算损失函数。
在优化过程中,需要选择⼀些合适的优化算法和学习率调整策略,以实现更加快速和稳定的收敛。在基于 ChatGPT
的对话⽣成任务中,常⽤的优化算法包括 Adam、SGD 等。学习率调整策略包括学习率衰减、Warmup 等。


IP属地:河南来自iPhone客户端1楼2023-03-08 12:23回复


    来自iPhone客户端2楼2023-03-08 12:25
    收起回复