昆虫飞行研究吸引了来自神经科学、空气动力学、昆虫学和其他学科背景的众多研究者。研究人员运用了一系列的测量手段,成功解释了飞蛾在夜间飞行的原理,并探索出了蜻蜓在空中悬停的原理。
数学方程揭示了昆虫飞行的物理机制,而高速摄像机让研究者们能够仔细地观察被拴住的昆虫在空中的独特飞行方式;
基因改造技术和显微技术可以用于研究控制飞行机制的肌肉组织,虚拟飞行模拟器可以让被拴住的昆虫以为自己真的在空中飞行。
“这是进化的奇迹,”康奈尔大学的理论物理学家和昆虫飞行研究者简・王(Jane Wang)说道。王正在研究蜻蜓的飞行。而面对这一课题,即便是最新的科技也无能为力。
例如,高速摄像机也不足以精确追踪蜻蜓翅膀的运动轨迹。即便如此,这些技术足以让研究者们识别出来诸多昆虫为了飞行而进化出来的适应性特征。许多适应性特征都服务于昆虫飞行的最重要动机:营养补给。
“虽然苍蝇飞行是为了找到伴侣或者保卫领地,”狄金森说,“但大多数昆虫飞行是为了觅食。昆虫就像是会飞的鼻子。”
数学方程揭示了昆虫飞行的物理机制,而高速摄像机让研究者们能够仔细地观察被拴住的昆虫在空中的独特飞行方式;
基因改造技术和显微技术可以用于研究控制飞行机制的肌肉组织,虚拟飞行模拟器可以让被拴住的昆虫以为自己真的在空中飞行。
“这是进化的奇迹,”康奈尔大学的理论物理学家和昆虫飞行研究者简・王(Jane Wang)说道。王正在研究蜻蜓的飞行。而面对这一课题,即便是最新的科技也无能为力。
例如,高速摄像机也不足以精确追踪蜻蜓翅膀的运动轨迹。即便如此,这些技术足以让研究者们识别出来诸多昆虫为了飞行而进化出来的适应性特征。许多适应性特征都服务于昆虫飞行的最重要动机:营养补给。
“虽然苍蝇飞行是为了找到伴侣或者保卫领地,”狄金森说,“但大多数昆虫飞行是为了觅食。昆虫就像是会飞的鼻子。”